While specialized detectors for AI-Generated Images (AIGI) achieve near-perfect accuracy on curated benchmarks, they suffer from a dramatic performance collapse in realistic, in-the-wild scenarios. In this work, we demonstrate that simplicity prevails over complex architectural designs. A simple linear classifier trained on the frozen features of modern Vision Foundation Models , including Perception Encoder, MetaCLIP 2, and DINOv3, establishes a new state-of-the-art. Through a comprehensive evaluation spanning traditional benchmarks, unseen generators, and challenging in-the-wild distributions, we show that this baseline not only matches specialized detectors on standard benchmarks but also decisively outperforms them on in-the-wild datasets, boosting accuracy by striking margins of over 30\%. We posit that this superior capability is an emergent property driven by the massive scale of pre-training data containing synthetic content. We trace the source of this capability to two distinct manifestations of data exposure: Vision-Language Models internalize an explicit semantic concept of forgery, while Self-Supervised Learning models implicitly acquire discriminative forensic features from the pretraining data. However, we also reveal persistent limitations: these models suffer from performance degradation under recapture and transmission, remain blind to VAE reconstruction and localized editing. We conclude by advocating for a paradigm shift in AI forensics, moving from overfitting on static benchmarks to harnessing the evolving world knowledge of foundation models for real-world reliability.
Safety alignment incurs safety tax that perturbs a large reasoning model's (LRM) general reasoning ability. Existing datasets used for safety alignment for an LRM are usually constructed by distilling safety reasoning traces and answers from an external LRM or human labeler. However, such reasoning traces and answers exhibit a distributional gap with the target LRM that needs alignment, and we conjecture such distributional gap is the culprit leading to significant degradation of reasoning ability of the target LRM. Driven by this hypothesis, we propose a safety alignment dataset construction method, dubbed DGR. DGR transforms and refines an existing out-of-distributional safety reasoning dataset to be aligned with the target's LLM inner distribution. Experimental results demonstrate that i) DGR effectively mitigates the safety tax while maintaining safety performance across all baselines, i.e., achieving \textbf{+30.2\%} on DirectRefusal and \textbf{+21.2\%} on R1-ACT improvement in average reasoning accuracy compared to Vanilla SFT; ii) the degree of reasoning degradation correlates with the extent of distribution shift, suggesting that bridging this gap is central to preserving capabilities. Furthermore, we find that safety alignment in LRMs may primarily function as a mechanism to activate latent knowledge, as a mere \textbf{10} samples are sufficient for activating effective refusal behaviors. These findings not only emphasize the importance of distributional consistency but also provide insights into the activation mechanism of safety in reasoning models.
Large Language Models (LLMs) exhibit substantial parameter redundancy, particularly in Feed-Forward Networks (FFNs). Existing pruning methods suffer from two primary limitations. First, reliance on dataset-specific calibration introduces significant data dependency and computational overhead. Second, being predominantly static, they fail to account for the evolving subset of knowledge neurons in LLMs during autoregressive generation as the context evolves. To address this, we introduce DART, i.e., Dynamic Attention-Guided Runtime Tracing), a lightweight, training-free method that performs on-the-fly context-based pruning. DART monitors shifts in attention score distributions to infer context changes, dynamically updating neuron-level masks to retain salient parameters. Across ten benchmarks, DART outperforms prior dynamic baseline, achieving accuracy gains of up to 14.5% on LLAMA-3.1-8B at 70% FFN sparsity. Furthermore, DART achieves up to 3x better ROUGE-L scores with respect to static-masked pruning on summarization tasks, with its performance comparable to the original dense models. We conclusively demonstrate that the proposed framework effectively adapts to diverse semantic contexts, preserves model capabilities across both general and domain-specific tasks while running at less than 10MBs of memory for LLAMA-3.1-8B(16GBs) with 0.1% FLOPs overhead. The code is available at https://github.com/seeder-research/DART.
Large reasoning models (LRMs) achieve remarkable performance by leveraging reinforcement learning (RL) on reasoning tasks to generate long chain-of-thought (CoT) reasoning. However, this over-optimization often prioritizes compliance, making models vulnerable to harmful prompts. To mitigate this safety degradation, recent approaches rely on external teacher distillation, yet this introduces a distributional discrepancy that degrades native reasoning. We propose ThinkSafe, a self-generated alignment framework that restores safety alignment without external teachers. Our key insight is that while compliance suppresses safety mechanisms, models often retain latent knowledge to identify harm. ThinkSafe unlocks this via lightweight refusal steering, guiding the model to generate in-distribution safety reasoning traces. Fine-tuning on these self-generated responses effectively realigns the model while minimizing distribution shift. Experiments on DeepSeek-R1-Distill and Qwen3 show ThinkSafe significantly improves safety while preserving reasoning proficiency. Notably, it achieves superior safety and comparable reasoning to GRPO, with significantly reduced computational cost. Code, models, and datasets are available at https://github.com/seanie12/ThinkSafe.git.
We study how to extend chain-of-thought (CoT) beyond language to better handle multimodal reasoning. While CoT helps LLMs and VLMs articulate intermediate steps, its text-only form often fails on vision-intensive problems where key intermediate states are inherently visual. We introduce modal-mixed CoT, which interleaves textual tokens with compact visual sketches represented as latent embeddings. To bridge the modality gap without eroding the original knowledge and capability of the VLM, we use the VLM itself as an encoder and train the language backbone to reconstruct its own intermediate vision embeddings, to guarantee the semantic alignment of the visual latent space. We further attach a diffusion-based latent decoder, invoked by a special control token and conditioned on hidden states from the VLM. In this way, the diffusion head carries fine-grained perceptual details while the VLM specifies high-level intent, which cleanly disentangles roles and reduces the optimization pressure of the VLM. Training proceeds in two stages: supervised fine-tuning on traces that interleave text and latents with a joint next-token and latent-reconstruction objective, followed by reinforcement learning that teaches when to switch modalities and how to compose long reasoning chains. Extensive experiments across 11 diverse multimodal reasoning tasks, demonstrate that our method yields better performance than language-only and other CoT methods. Our code will be publicly released.
Large Language Models (LLMs) have emerged as powerful learning tools, but they lack awareness of learners' cognitive and physiological states, limiting their adaptability to the user's learning style. Contemporary learning techniques primarily focus on structured learning paths, knowledge tracing, and generic adaptive testing but fail to address real-time learning challenges driven by cognitive load, attention fluctuations, and engagement levels. Building on findings from a formative user study (N=66), we introduce GuideAI, a multi-modal framework that enhances LLM-driven learning by integrating real-time biosensory feedback including eye gaze tracking, heart rate variability, posture detection, and digital note-taking behavior. GuideAI dynamically adapts learning content and pacing through cognitive optimizations (adjusting complexity based on learning progress markers), physiological interventions (breathing guidance and posture correction), and attention-aware strategies (redirecting focus using gaze analysis). Additionally, GuideAI supports diverse learning modalities, including text-based, image-based, audio-based, and video-based instruction, across varied knowledge domains. A preliminary study (N = 25) assessed GuideAI's impact on knowledge retention and cognitive load through standardized assessments. The results show statistically significant improvements in both problem-solving capability and recall-based knowledge assessments. Participants also experienced notable reductions in key NASA-TLX measures including mental demand, frustration levels, and effort, while simultaneously reporting enhanced perceived performance. These findings demonstrate GuideAI's potential to bridge the gap between current LLM-based learning systems and individualized learner needs, paving the way for adaptive, cognition-aware education at scale.
As generative AI achieves hyper-realism, superficial artifact detection has become obsolete. While prevailing methods rely on resource-intensive fine-tuning of black-box backbones, we propose that forgery detection capability is already encoded within pre-trained models rather than requiring end-to-end retraining. To elicit this intrinsic capability, we propose the discriminative neural anchors (DNA) framework, which employs a coarse-to-fine excavation mechanism. First, by analyzing feature decoupling and attention distribution shifts, we pinpoint critical intermediate layers where the focus of the model logically transitions from global semantics to local anomalies. Subsequently, we introduce a triadic fusion scoring metric paired with a curvature-truncation strategy to strip away semantic redundancy, precisely isolating the forgery-discriminative units (FDUs) inherently imprinted with sensitivity to forgery traces. Moreover, we introduce HIFI-Gen, a high-fidelity synthetic benchmark built upon the very latest models, to address the lag in existing datasets. Experiments demonstrate that by solely relying on these anchors, DNA achieves superior detection performance even under few-shot conditions. Furthermore, it exhibits remarkable robustness across diverse architectures and against unseen generative models, validating that waking up latent neurons is more effective than extensive fine-tuning.
LLM role-playing, i.e., using LLMs to simulate specific personas, has emerged as a key capability in various applications, such as companionship, content creation, and digital games. While current models effectively capture character tones and knowledge, simulating the inner thoughts behind their behaviors remains a challenge. Towards cognitive simulation in LLM role-play, previous efforts mainly suffer from two deficiencies: data with high-quality reasoning traces, and reliable reward signals aligned with human preferences. In this paper, we propose HER, a unified framework for cognitive-level persona simulation. HER introduces dual-layer thinking, which distinguishes characters' first-person thinking from LLMs' third-person thinking. To bridge these gaps, we curate reasoning-augmented role-playing data via reverse engineering and construct human-aligned principles and reward models. Leveraging these resources, we train \method models based on Qwen3-32B via supervised and reinforcement learning. Extensive experiments validate the effectiveness of our approach. Notably, our models significantly outperform the Qwen3-32B baseline, achieving a 30.26 improvement on the CoSER benchmark and a 14.97 gain on the Minimax Role-Play Bench. Our datasets, principles, and models will be released to facilitate future research.
We introduce KAPSO, a modular framework for autonomous program synthesis and optimization. Given a natural language goal and an evaluation method, KAPSO iteratively performs ideation, code synthesis and editing, execution, evaluation, and learning to improve a runnable artifact toward measurable objectives. Rather than treating synthesis as the endpoint, KAPSO uses synthesis as an operator within a long-horizon optimization loop, where progress is defined by evaluator outcomes. KAPSO targets long-horizon failures common in coding agents, including lost experimental state, brittle debugging, and weak reuse of domain expertise, by integrating three tightly coupled components. First, a git-native experimentation engine isolates each attempt as a branch, producing reproducible artifacts and preserving provenance across iterations. Second, a knowledge system ingests heterogeneous sources, including repositories, internal playbooks, and curated external resources such as documentation, scientific papers, and web search results, and organizes them into a structured representation that supports retrieval over workflows, implementations, and environment constraints. Third, a cognitive memory layer coordinates retrieval and maintains an episodic store of reusable lessons distilled from experiment traces (run logs, diffs, and evaluator feedback), reducing repeated error modes and accelerating convergence. We evaluated KAPSO on MLE-Bench (Kaggle-style ML competitions) and ALE-Bench (AtCoder heuristic optimization), and report end-to-end performance. Code Available at: https://github.com/Leeroo-AI/kapso
Large language models have achieved strong performance on medical reasoning benchmarks, yet their deployment in clinical settings demands rigorous verification to ensure factual accuracy. While reward models offer a scalable approach for reasoning trace verification, existing methods face two limitations: they produce only scalar reward values without explicit justification, and they rely on single-pass retrieval that precludes adaptive knowledge access as verification unfolds. We introduce $\method$, an agentic framework that addresses these limitations by training medical reasoning verifiers to iteratively query external medical corpora during evaluation. Our approach combines tool-augmented verification with an iterative reinforcement learning paradigm that requires only trace-level supervision, alongside an adaptive curriculum mechanism that dynamically adjusts training data distribution. Across four medical reasoning benchmarks, $\method$ achieves substantial gains over existing methods, improving MedQA accuracy by 23.5% and MedXpertQA by 32.0% relative to the base generator in particular. Crucially, $\method$ demonstrates an $\mathbf{8\times}$ reduction in sampling budget requirement compared to prior reward model baselines. These findings establish that grounding verification in dynamically retrieved evidence offers a principled path toward more reliable medical reasoning systems.